Abstract Hydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube (MWCNT-COOH) in repeated batch mode was studied. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy… Click to show full abstract
Abstract Hydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube (MWCNT-COOH) in repeated batch mode was studied. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM) were employed to confirm immobilization of E. aerogenes successfully. The effect of MWCNT-COOH concentrations (0.2, 0.6, and 1.2 mg/mL) on hydrogen production was investigated. The present study showed that immobilized E. aerogenes on 1.2 mg/mL MWCNT-COOH resulted in higher hydrogen yield (2.2 moL/mol glucose), hydrogen production rate (2.72 L/L.h), and glucose degradation efficiency (96.20%) and shorter the lag phase (1 h) compared to the free E. aerogenes. Modified Gompertz and Logistic models were employed to predict the cumulative hydrogen production successfully.
               
Click one of the above tabs to view related content.