LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen purification layered bed optimization based on artificial neural network prediction of breakthrough curves

Photo by possessedphotography from unsplash

Abstract Artificial neural network has generally been used for a quantity of tasks such as classification, prediction, clustering and association analysis in different application fields. To the best of our… Click to show full abstract

Abstract Artificial neural network has generally been used for a quantity of tasks such as classification, prediction, clustering and association analysis in different application fields. To the best of our knowledge, there are few researches on breakthrough curve used artificial neural network. In this paper, an artificial neural network model is established for breakthrough curves prediction in relation to a ternary components gas with a two-layered adsorbent bed piled up with activated carbon (AC) and zeolite, and an optimization is concluded by the artificial neural network. The performance data which acquired by Aspen model has been utilized for training artificial neural network (ANN) model. The ANN model trained has great competence for making prediction of hydrogen purification performance of PSA cycle with impressive speed and rational accuracy. On the strength of the ANN model, we implemented an optimization for seeking first-rank PSA cycle parameters. The optimization is concentrated on the effect of inlet flow rate, pressure and layer ratio of activated carbon height to zeolite height. Furthermore, this paper shows that the PSA cycle's optimal operation parameters can be obtained by use of ANN model and optimization algorithm, the ANN model has been trained according to the data generated by Aspen adsorption model.

Keywords: optimization; neural network; artificial neural; ann model

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.