LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions – A numerical study

Photo from wikipedia

Abstract Explosions in homogeneous reactive mixtures have been widely studied both experimentally and numerically. However, in accident scenarios, mixtures are usually inhomogeneous due to the localized nature of most fuel… Click to show full abstract

Abstract Explosions in homogeneous reactive mixtures have been widely studied both experimentally and numerically. However, in accident scenarios, mixtures are usually inhomogeneous due to the localized nature of most fuel releases, buoyancy effects and the finite time between release and ignition. It is imperative to determine whether mixture inhomogeneity can increase the explosion hazard beyond what is known for homogeneous mixtures. The present numerical investigation aims to study flame acceleration and transition to detonation in homogeneous and inhomogeneous hydrogen-air mixtures with two different average hydrogen concentrations in a horizontal rectangular channel. A density-based solver was implemented within the OpenFOAM CFD toolbox. The Harten–Lax–van Leer–Contact (HLLC) scheme was used for accurate shock capturing. A high-resolution grid is provided by using adaptive mesh refinement, which leads to 30 grid points per half reaction length (HRL). In agreement with previous experimental results, it is found that transverse concentration gradients can either strengthen or weaken flame acceleration, depending on average hydrogen concentration and channel obstruction. Comparing experiments and simulations, the paper analyses flame speed and pressure histories, identifies locations of detonation onset, and interprets the effects of concentration gradients.

Keywords: transition; detonation; concentration gradients; concentration; rectangular channel

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.