LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of KNbO3 catalyst on hydrogen sorption kinetics of MgH2

Photo from wikipedia

Abstract The influences of Nb-containing oxides and ternary compound in hydrogen sorption performance were investigated. As faster desorption kinetic and lower activation energy were reported by addition of a ternary… Click to show full abstract

Abstract The influences of Nb-containing oxides and ternary compound in hydrogen sorption performance were investigated. As faster desorption kinetic and lower activation energy were reported by addition of a ternary compound catalyst such as K2NiF6, the influence of KNbO3 on hydrogen storage properties of MgH2 has been investigated for the first time. The MgH2 - KNbO3 composite desorbed 3.9 wt% of hydrogen within 10 min, while MgH2 and MgH2-Nb₂O₅ composites desorbed 0.66 wt% and 3.2 wt% respectively under similar condition. For MgH2 with other Nb-contained catalysts such as Nb, NbO and Nb₂O3, the desorption rate was almost the same as the one registered for as-milled MgH2. The analysis of differential scanning calorimetry (DSC) showed that MgH2-KNbO3 composite started to release hydrogen at ∼335 °C which is 50 °C lower compared to as-milled MgH2 without any additives. The activation energy for the hydrogen desorption was estimated to be about 104 ± 6.8 kJ mol−1 for this material, while for the as-milled MgH2 was about 165 ± 2.0 kJ mol−1. It is believed that Nb-ternary oxide catalyst (KNbO3) showed a good catalytic effect and enhance the sorption kinetics of MgH2.

Keywords: sorption; hydrogen sorption; hydrogen; catalyst; sorption kinetics; kinetics mgh2

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.