LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes

Photo from wikipedia

Abstract Hydrogen separation membranes based on a heated metal foil of a palladium alloy, offer excellent permeability for hydrogen as a result of the solution-diffusion mechanism. Here, the possibility to… Click to show full abstract

Abstract Hydrogen separation membranes based on a heated metal foil of a palladium alloy, offer excellent permeability for hydrogen as a result of the solution-diffusion mechanism. Here, the possibility to separate hydrogen from the mixture of Natural Gas (NG) and hydrogen (NG+H2) with various NG concentrations using Pd, PdCu53 and PdAg24 hydrogen purification membranes is demonstrated. Hydrogen concentrations above ∼25% (for Pd and PdCu53) and ∼15% (for PdAg24) were required for the hydrogen separation to proceed at 400 °C and 5 bar pressure differential. Hydrogen permeability of the studied alloys could be almost fully recovered after switching the feed gas to pure hydrogen, indicating no significant interaction between the natural gas components and the membranes surface at the current experimental condition. Hydrogen flux of the membranes at various pressure differential was measured and no changes in the hydrogen permeation mechanism could be noticed under (NG 50%+H2) mixture. The hydrogen separation capability of the membranes is suggested to be mainly controlled by the operating temperature and the hydrogen partial pressure.

Keywords: natural gas; hydrogen; gas hydrogen; hydrogen separation

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.