LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of deep geological environments for nuclear waste disposal on the hydrogen entry into titanium

Photo by rfhd from unsplash

Abstract The surface of nuclear waste container will be completely wetted by the groundwater infiltrating through the bentonite or concrete buffer after the closure of its deep geological disposal. Because… Click to show full abstract

Abstract The surface of nuclear waste container will be completely wetted by the groundwater infiltrating through the bentonite or concrete buffer after the closure of its deep geological disposal. Because of its excellent corrosion resistance, titanium is one of the candidates for the container materials for high-level nuclear waste (HLNW) disposal. However, once oxygen depleted in the large time scale deep geological disposal, titanium container will suffer from hydrogen embrittlement (HE). Therefore, in order to predict the potential danger of the HLNW container caused by HE, the hydrogen entry into titanium was studied at different temperatures in simulated deep geological environment of Beishan, which is the preselected HLNW disposal area in China. Devanathan-Stachurski cell methods were firstly implemented in measuring apparent hydrogen diffusivity in titanium with hydrides being formed during hydrogen charging at low temperature ranges (298–373 K). Given the characteristic of the Devanathan-Stachurski cell method's capable of getting apparent diffusivity with combined influencing factors easily, the technique provides a simple way to measure the parameter that is necessary for the estimation of hydrogen penetration depth, facilitating the design of HLNW containers.

Keywords: disposal; hydrogen; titanium; nuclear waste; deep geological

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.