LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoelectrochemical water splitting with 600 keV N2+ ion irradiated BiVO4 and BiVO4/Au photoanodes

Photo by roanlavery from unsplash

Abstract Low energy N2+ ion beam with 600 keV energy has been used to irradiate BiVO4 and Au nanoparticles loaded BiVO4 (BiVO4/Au) thin films deposited over fluorine doped tin oxide substrates… Click to show full abstract

Abstract Low energy N2+ ion beam with 600 keV energy has been used to irradiate BiVO4 and Au nanoparticles loaded BiVO4 (BiVO4/Au) thin films deposited over fluorine doped tin oxide substrates via spray pyrolysis technique. Ion irradiation results in tailoring the optical, electrical, and morphological properties of the thin films and thence also responsible for changes in electrochemical properties. The scanning electron microscope images reveal the evolution of Au nanoparticles after irradiation at 2 × 1015 fluence to a nanourchins type of morphology. In consequence of morphological changes, the signature of surface plasmon resonance peak exhibited by Au nanoparticles in BiVO4/Au shows improvement. An increase of approximately 92% in photocurrent density in comparison to pristine BiVO4 has been found after irradiation in BiVO4/Au photoanode at 2 × 1015 ions/cm2 fluence. Moreover, irradiation also aids in improving photoelectrochemical response of BiVO4 photoanodes without Au nanoparticles. The enhancement can be attributed to the notable changes in onset potential, charge separation, charge transfer resistance and optical properties.

Keywords: ion; 600 kev; bivo4 bivo4; irradiation; bivo4; bivo4 photoanodes

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.