Abstract In this work, advanced x-ray radiographic techniques available at the Canadian Light Source (CLS) were utilized to study water droplet dynamics in a serpentine flow channel mimicking a proton… Click to show full abstract
Abstract In this work, advanced x-ray radiographic techniques available at the Canadian Light Source (CLS) were utilized to study water droplet dynamics in a serpentine flow channel mimicking a proton exchange membrane fuel cell (PEMFC). High spatial and temporal resolution coupled with high energy photons of an x-ray beam provided high-resolution images of water droplets. This technique solved the problem caused by the opaqueness of fuel cell materials including the gas diffusion layer by providing a unique way to study water droplet dynamics at different operating conditions. From the captured images, droplet emergence and formation on porous gas diffusion layers (GDLs) were analyzed. Three commercially available GDLs (Sigracet AA, Sigracet BA, and Sigracet BC) were used and droplet detachment height was found to decrease in the following order AA
               
Click one of the above tabs to view related content.