Abstract The aim of this work was to study syngas production by integrating CO2 partial gasification (for CO production) of pine sawdust (PS) and methane pyrolysis (for H2 production) over… Click to show full abstract
Abstract The aim of this work was to study syngas production by integrating CO2 partial gasification (for CO production) of pine sawdust (PS) and methane pyrolysis (for H2 production) over the gasification residue. Effect of the gasification conditions (including CO2 flow rate, reaction temperature, mass ratio of PS:Ni and reaction time) was investigated on properties of the gasification residue. Besides CO-rich gas released from the gasification process with CO2 conversion up to about 92%, the gasification residue could serve as robust catalyst for H2 production by methane pyrolysis. Thanks to the nickel crystallites formed with high reduction degree and high dispersion on the surface after the gasification process, the gasification residue was competent for high and stable methane conversion (about 91%) at 850 °C. In addition to the flexible syngas output (in theory, with an arbitrary ratio of H2/CO), valuable filamentous carbons can be achieved by regulating the process parameters.
               
Click one of the above tabs to view related content.