LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of co-sintering process for anode-supported solid oxide fuel cells with gadolinia-doped ceria/lanthanum silicate bi-layer electrolyte

Photo from wikipedia

Abstract Gadolinia-doped ceria (GDC) and lanthanum silicate (LS) are expected to be promising materials for electrolytes of solid oxide fuel cells (SOFCs) because of their high ionic conductivities at intermediate… Click to show full abstract

Abstract Gadolinia-doped ceria (GDC) and lanthanum silicate (LS) are expected to be promising materials for electrolytes of solid oxide fuel cells (SOFCs) because of their high ionic conductivities at intermediate temperatures. However, performance degradation of SOFCs is caused by current leakage through GDC and poor densification of LS. In the present study, LS was used as a blocking layer for preventing the current leakage of GDC electrolyte. Thermal shrinkage measurements and scanning electron microscopy (SEM) observation suggested that the addition of Bi2O3 in LS electrolyte (LSB) contributed to the decrease in the sintering temperature of the LS and improved densification of the GDC/LS bi-layer electrolyte. Consequently, the open-circuit voltage for the cell with GDC/LS and GDC/LSB bi-layer electrolytes increased effectively in comparison with that of the cell with GDC single-layer electrolyte. The electrical conductivity and fuel cell characteristics were compared among the cells with GDC, GDC/LS, and GDC/LSB electrolytes.

Keywords: fuel; gdc; electrolyte; layer electrolyte; gadolinia doped

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.