Abstract In this paper, a BiVO4/FeVO4 heterostructure photoanode was synthesized by electrospray technique, and its photoelectrochemical water oxidation performance was investigated. The maximum photocurrent density of 0.4 mA cm−2 at 1.23 VRHE… Click to show full abstract
Abstract In this paper, a BiVO4/FeVO4 heterostructure photoanode was synthesized by electrospray technique, and its photoelectrochemical water oxidation performance was investigated. The maximum photocurrent density of 0.4 mA cm−2 at 1.23 VRHE was 6 times higher than that of pristine BiVO4 films (0.06 mA cm−2). Through the analysis of the electrochemical impedance spectroscopy (EIS) results, the improvement of photoelectrochemical performance could be attributed to the formation of heterostructure at the two-phase interface, which led to the effective separation of electron-hole pairs. This work offers a new effective strategy to construct semiconductor nanocomposites for efficient photoelectrochemical water oxidation.
               
Click one of the above tabs to view related content.