LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis

Photo from wikipedia

Abstract In the present study, defatted spent coffee ground (DSCG) treated with different acids was used as a metal-free catalyst for the first time. The aim of undertaken work is… Click to show full abstract

Abstract In the present study, defatted spent coffee ground (DSCG) treated with different acids was used as a metal-free catalyst for the first time. The aim of undertaken work is to demonstrate that DSCG can be used as a green catalyst to produce hydrogen through methanolysis of sodium borohydride. To produce hydrogen by the sodium borohydride methanolysis (NaBH4), DSCG was pretreated with different acids (HNO3, CH3COOH, HCl). According to the superior acid performance, acetic acid was selected and then different concentrations of the chosen acid were evaluated (1M, 3M, 5M, and 7M). Subsewuently, different temperatures (200, 300, 400 and 500 °C) and burning times (30, 45, 60 and 90 min) for the optimization of DSCG-catalyst were tested. The experiments with the use of CH3COOH treated DSCG-catalyst reveal that the optimal acid concentration was 1M CH3COOH and the burning temperatures and time were 300 °C and 60 min, respectively. FTIR, SEM, ICP-MS and CHNS elemental analysis were carried out for a through characterization of the catalyst samples. In this study, the experiments were carried out with 10 ml methanol solution contained 0.025 g NaBH4 with 0.1 g catalyst at 30 °C unless otherwise stated. The effect of NaBH4 concentration was investigated with use of 1%, 2.5%, 5%, and 7.5% NaBH4, while the influence of catalyst concentration was discovered with the use of 0.05, 0.1, 0.15, and 0.25 g catalyst. Different temperatures were chosen (30, 40, 50 and 60 °C) to explore the hydrogen production performance of the catalyst. In addition, the maximum hydrogen production rate through methanolysis reaction of NaBH4 by this catalyst was found to be 3171.4 mL min−1gcat−1. Also, the activation energy was determined to be 25.23 kJ mol−1.

Keywords: production; hydrogen; defatted spent; sodium; methanolysis; catalyst

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.