LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient oxygen reduction electrocatalysis on Mn3O4 nanoparticles decorated N-doped carbon with hierarchical porosity and abundant active sites

Photo from wikipedia

Abstract Transition metal on nitrogen-doped carbons (M-N-C, M = Fe, Co, Mn, etc.) are a group of promising sustainable electrocatalysts toward oxygen reduction reaction (ORR). Compared to its Fe, Co analogues, Mn–N–C… Click to show full abstract

Abstract Transition metal on nitrogen-doped carbons (M-N-C, M = Fe, Co, Mn, etc.) are a group of promising sustainable electrocatalysts toward oxygen reduction reaction (ORR). Compared to its Fe, Co analogues, Mn–N–C possesses the advantage of being inert for catalyzing Fenton reaction, and thus is expected to offer higher durability, but its ORR activity needs essential improvement. Herein, an efficient Mn–N–C ORR catalyst composed of Mn3O4 nanoparticles supported on nitrogen-doped carbon was successfully synthesized by pyrolysis of cyanamide/Mn-incorporated polydopamine (PDA) film coated carbon black (CB), where the presence of N-rich cyanamide confers abundant Mn-Nx active sites and rich micropore/mesopores to the catalyst. In an alkaline medium, as-synthesized Mn–N–C electrocatalyst outperforms commercial Pt/C catalyst in terms of onset potential (0.98 V, vs. RHE), half-wave potential (0.868 V, vs. RHE), and limiting current density. Meanwhile, it exhibits excellent durability and resistance to methanol. In a Zinc-air primary battery, it demonstrates better performance as a cathodic catalyst than Pt/C.

Keywords: active sites; doped carbon; carbon; mn3o4 nanoparticles; abundant active; oxygen reduction

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.