LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal analysis of high-pressure hydrogen during the discharging process

Abstract The transient temperature and pressure of hydrogen are measured during the hydrogen discharging process through an orifice in a high-pressure vessel. The initial pressures of hydrogen in the vessel… Click to show full abstract

Abstract The transient temperature and pressure of hydrogen are measured during the hydrogen discharging process through an orifice in a high-pressure vessel. The initial pressures of hydrogen in the vessel are set to approximately 30, 60, and 100 MPa. The mass flow rate and heat flux between hydrogen and the inner wall of the vessel are theoretically estimated using fundamental equations and experimental results with accurate thermophysical properties of hydrogen. The generation of temperature distribution and flow due to heat transfer in the vessel during discharge is verified by numerical analysis. Further, the relationship between reference gas temperature and heat flux in the vessel during the release of high-pressure hydrogen is studied. The average heat flux in the vessel is calculated using experimental and numerical analysis. The appropriate reference temperature is obtained using the comparison of the average heat flux in the vessel. In addition, the dominant heat transfer mode during hydrogen discharge is investigated. Numerical analysis shows that natural convection is formed inside the vessel due to a decrease in temperature. The Nusselt numbers in this process are presented as a function of Rayleigh numbers which are obtained by the experimental results and mass and energy conservations. The relationship between the Nusselt and Rayleigh numbers agrees with the heat transfer correlations of natural convections.

Keywords: hydrogen; analysis; vessel; pressure hydrogen; heat

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.