LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The destabilization of LiBH4 through the addition of Bi2Se3 nanosheets

Photo by karan_suthar_ from unsplash

Abstract Efficient storage of hydrogen is a key issue to establish hydrogen infrastructure. In the efforts of searching suitable hydrogen storage alloys, several systems have been explored so far. All… Click to show full abstract

Abstract Efficient storage of hydrogen is a key issue to establish hydrogen infrastructure. In the efforts of searching suitable hydrogen storage alloys, several systems have been explored so far. All of them suffers from some drawbacks such as low gravimetric capacity, high stability, slow sorption kinetics, etc. Lithium borohydride (LiBH4) is one of the leading contender among the hydrogen storage materials owing to its high hydrogen content of 18.5 wt%. However, its high stability needs a high operating temperature (>450 °C) for the decomposition. Recently, a thermochemical reaction between Bi2X3 and LiBH4 was observed at 120 °C while performing experiments on the anode properties of Bi2X3 (X = S, Se, & Te) for Li-ion batteries. This indicated the possibility of destabilization of LiBH4 and its low-temperature decomposition. This work presents the effect of Bi2Se3 addition to the decomposition properties of LiBH4 using XRD and XPS techniques. The first step decomposition was observed to be initiated at around 180 °C, which is much lower than 450 °C for the pristine LiBH4. A further reduction in the onset temperature is observed when the bulk Bi2Se3 is replaced by the nanosheets of this material. The mechanism of this destabilization is reported herein.

Keywords: bi2se3; hydrogen; libh4 addition; destabilization libh4; decomposition

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.