LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of experimental and simulation results on catalytic HI decomposition in a silica-based ceramic membrane reactor

Photo from wikipedia

Abstract In this study, the catalytic decomposition of hydrogen iodide was theoretically and experimentally investigated in a silica-based ceramic membrane reactor to assess the reactor's suitability for thermochemical hydrogen production.… Click to show full abstract

Abstract In this study, the catalytic decomposition of hydrogen iodide was theoretically and experimentally investigated in a silica-based ceramic membrane reactor to assess the reactor's suitability for thermochemical hydrogen production. The silica membranes were fabricated by depositing a thin silica layer onto the surface of porous alumina ceramic support tubes via counter-diffusion chemical vapor deposition of hexyltrimethoxysilane. The performance of the silica-based ceramic membrane reactor was evaluated by exploring important operating parameters such as the flow rates of the hydrogen iodide feed and the nitrogen sweep gas. The influence of the flow rates on the hydrogen iodide decomposition conversion was investigated in the lower range of the investigated feed flow rates and in the higher range of the sweep-gas flow rates. The experimental data agreed with the simulation results reasonably well, and both highlighted the possibility of achieving a conversion greater than 0.70 at decomposition temperature of 400 °C. Therefore, the developed silica-based ceramic membrane reactor could enhance the total thermal efficiency of the thermochemical process.

Keywords: silica; silica based; membrane reactor; ceramic membrane; reactor; based ceramic

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.