LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cd0.5Zn0.5S/Ni2P noble-metal-free photocatalyst for high-efficient photocatalytic hydrogen production: Ni2P boosting separation of photocarriers

Photo by maximalfocus from unsplash

Abstract Establishing efficient co-catalytic loaded semiconductors for efficient charge separation is a hopeful way for enhance photocatalytic water splitting hydrogen evolution. Herein, we successfully constructed the Cd0.5Zn0.5S/Ni2P (CZS/Ni2P) nanocomposites via… Click to show full abstract

Abstract Establishing efficient co-catalytic loaded semiconductors for efficient charge separation is a hopeful way for enhance photocatalytic water splitting hydrogen evolution. Herein, we successfully constructed the Cd0.5Zn0.5S/Ni2P (CZS/Ni2P) nanocomposites via two-step hydrothermal method. The CZS/Ni2P composites show much improved activity than the origin CZS for photocatalytic H2 generation. When the content of Ni2P loaded on the Cd0.5Zn0.5S (CZS) is 0.3 mol%, the photocatalyst achieves the highest photocatalytic hydrogen generation rate of 41.26 mmol g−1 h−1 under visible light. The Ni–S bonds on the close contact interface between CZS and Ni2P can be act as electron-bridge to provide a channel for electron transfer. During the photocatalysis processing, Ni2P can be used as electron traps to attract electrons from CZS, resulting in the improvement of the photocatalytic performance.

Keywords: hydrogen; czs; 5zn0 ni2p; photocatalytic hydrogen; cd0 5zn0; ni2p

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.