LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-temperature selective dehydrogenation of methylcyclohexane by surface protonics over Pt/anatase-TiO2 catalyst

Photo from wikipedia

Abstract For a liquid organic hydride system used for a hydrogen carrier, methylcyclohexane (MCH)–toluene cycle is promising. In this cycle, dehydrogenation of MCH is an endothermic reaction and a key… Click to show full abstract

Abstract For a liquid organic hydride system used for a hydrogen carrier, methylcyclohexane (MCH)–toluene cycle is promising. In this cycle, dehydrogenation of MCH is an endothermic reaction and a key step. We have conducted dehydrogenation of MCH over Pt/anatase-TiO2 catalyst in an electric field to promote MCH dehydrogenation at a temperature as low as 448 K. The electric field application brought high activity of 37% conversion even at 448 K, exceeding the thermodynamic equilibrium of 12%. This Pt/anatase-TiO2 catalyst showed only a small amount of methane and carbon by-production and showed high activity for 360 min because of surface protonics.

Keywords: methylcyclohexane; dehydrogenation; tio2 catalyst; anatase tio2; surface protonics

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.