LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hexagonal CoSe2 nanosheets stabilized by nitrogen-doped reduced graphene oxide for efficient hydrogen evolution reaction

Photo by therealslkhv from unsplash

Abstract CoSe2 is considered as a promising candidate among non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) due to its intrinsic metallicity and low Gibbs free energy for hydrogen… Click to show full abstract

Abstract CoSe2 is considered as a promising candidate among non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) due to its intrinsic metallicity and low Gibbs free energy for hydrogen adsorption. Recently, the hexagonal CoSe2 becoming increasingly popular owing to its chemically favorable basal plane, which provides more active sites, but remains limited by the poor stability. In this study, we design a small-molecule-amine-assisted hydrothermal method to in situ anchor the hexagonal CoSe2 nanosheets (NSs) on nitrogen-doped reduced graphene oxides (RGO) as an advanced electrode material for HER. Due to the existence of abundant functional groups and high specific surface area of RGO, the hexagonal CoSe2 NSs could be stably formed on RGO. As a result, only a small overpotential of 172 mV is needed for the optimized sample to drive a current density of 10 mA cm−2 in 0.5 M H2SO4 and the Tafel slope is 35.2 mV dec−1, which is comparable with the state-of-the-art Pt catalyst (32.3 mV dec−1). Therefore, the facile and low-cost method for synthesizing hexagonal TMDs with robust electrical and chemical coupling developed in this work is promising in promoting the large-scale application of non-precious electrocatalysts.

Keywords: cose2 nanosheets; hexagonal cose2; cose2; hydrogen evolution; evolution reaction

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.