LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of channel length on propagation behaviors of non-premixed H2-air flames in Y-shaped micro combustors

Photo from wikipedia

Abstract In the present study, dynamics of non-premixed hydrogen-air flames in two Y-shaped cylindrical micro combustors of different horizontal channel lengths (L = 100 and 200 mm) were experimentally compared. The inner diameters… Click to show full abstract

Abstract In the present study, dynamics of non-premixed hydrogen-air flames in two Y-shaped cylindrical micro combustors of different horizontal channel lengths (L = 100 and 200 mm) were experimentally compared. The inner diameters of the micro-combustors are 2 mm. Unburned mixture was ignited by heating the near-exit wall with a butane torch. The results show that six and three flame propagation modes in the 200-mm and 100-mm micro-combustors were observed, respectively. Moreover, it is found that the flame oscillation duration is much longer with a larger noise intensity in the 200-mm micro-combustor. As a result, the mean propagation speed under L = 100 mm is much larger. In addition, the edge flame is longer on the lean side under L = 100 mm and almost identical on the rich side for the two combustors. Furthermore, the luminosity of edge flame in the 100-mm micro-combustor is much brighter. Numerical analysis reveals that the deflection of propagating flame in the Y-shaped micro-combustor is determined by the stoichiometric line. In summary, the short combustor has a smaller heat loss ratio and a stronger flame-wall thermal coupling, which can enhance the combustion intensity and increase the flame propagation speed.

Keywords: propagation; flame; air flames; non premixed; micro combustors

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.