LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibrational nonequilibrium and reaction heat effect in diluted hydrogen-oxygen mixtures behind reflected shock waves at 1000 < T < 1300 K

Photo by gcowie from unsplash

Abstract Vibrationally nonequilibrium model of kinetics in the reacting mixture H2 + O2 + Ar behind the reflected shock wave is formulated as a non-isothermal process occurring adiabatically at a constant volume. The model… Click to show full abstract

Abstract Vibrationally nonequilibrium model of kinetics in the reacting mixture H2 + O2 + Ar behind the reflected shock wave is formulated as a non-isothermal process occurring adiabatically at a constant volume. The model takes into account the vibrational nonequilibrium for the starting (primary) H2 and O2 molecules, as well as the molecular intermediates HO2, OH, O2(1Δ), and the main reaction product H2O. Calculation results that simulate experimental data on the ignition induction time measurements in the hydrogen oxygen mixtures behind reflected shock waves by the methods of absorption spectroscopy (monitoring the OH(2Π) radical) and emission spectroscopy (monitoring the OH*(2Σ+) radical) at temperatures of 1000

Keywords: hydrogen oxygen; reflected shock; vibrational nonequilibrium; spectroscopy; behind reflected

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.