LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of pH control on biohythane production and microbial structure in an innovative multistage anaerobic hythane reactor (MAHR)

Photo by austriannationallibrary from unsplash

Abstract An innovative multistage anaerobic hythane reactor (MAHR) which combines an internal biofilm (MH) and an external up-flow sludge blanket (MM) was proposed to produce biohythane from wastewater. The effect… Click to show full abstract

Abstract An innovative multistage anaerobic hythane reactor (MAHR) which combines an internal biofilm (MH) and an external up-flow sludge blanket (MM) was proposed to produce biohythane from wastewater. The effect of pH on its biohythane production and microbial diversity was performed. Results showed that the maximum hydrogen production rate (4.900 L/L/d) was achieved at a pH of 6.0, in comparison to a maximum methane production rate of 10.271 L/L/d at a pH of 6.5. In addition, a suitable hythane (H2/(H2+CH4) of 16.06%) production can be achieved in MH after the initial pH was adjusted from 7.0 to 6.5, and a relatively high methane yield (271.34 mL CH4/gCOD) was obtained in MM. Illumina Miseq sequencing results revealed that decreasing pH led to an increase of the acidogenesis families (Eubacteriaceae, Ruminococcaceae) in MH and an increase of hydrogenotrophic methanogens (Methanobacteriaceae) in MM. The Methanosaetaceae gradually occupied a major portion after a long period of recovery. This work demonstrated the unique advantages of MAHR for the biohythane production under optimal pH conditions.

Keywords: innovative multistage; biohythane production; production; biohythane; multistage anaerobic; hythane

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.