LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of intrinsic defects on the photocatalytic water-splitting activities of PtSe2

Photo from wikipedia

Abstract PtSe2 monolayer is previously predicted to be a two-dimensional water-splitting photocatalyst. However, the weak van der Waals (vdW) interaction between H2O and the basal surface of PtSe2 significantly undermines… Click to show full abstract

Abstract PtSe2 monolayer is previously predicted to be a two-dimensional water-splitting photocatalyst. However, the weak van der Waals (vdW) interaction between H2O and the basal surface of PtSe2 significantly undermines its photocatalytic water-splitting activities. In this work, we explore the possibility of various intrinsic defects of PtSe2 in remedying this deficiency on the basis of first-principles calculations. It is interesting to find that the introduction of Pt@Se, Se@Pt, and Se interstitial defect not only fully retain the water redox abilities of pure PtSe2 and realize spatial separation of photogenerated electrons and holes, but also can extend optical absorption range and absorption coefficients. Moreover, introduction of the three kinds of defects increase the initial weak vdW interactions between H2O and the PtSe2 surface to different extent. In particular, Pt@Se anti-site defect transform the initial weak vdW to strong chemical interaction between H2O and PtSe2 surface, and function as active reaction site. These insights demonstrate that introduction of intrinsic defects, especially the Pt@Se anti-site defect, are effective means for improving the photocatalytic water-splitting activities of PtSe2 monolayer.

Keywords: activities ptse2; water splitting; water; intrinsic defects; photocatalytic water; splitting activities

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.