LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic study of dry reforming of methane using hybrid DBD plasma reactor over La2O3 co-supported Ni/MgAl2O4 catalyst

Photo from wikipedia

Abstract A kinetic study on dry reforming of methane (DRM) in hybrid dielectric barrier discharge (DBD) plasma reactor over La2O3 co-supported Ni/MgAl2O4 catalyst has been investigated. Three different parametric effects… Click to show full abstract

Abstract A kinetic study on dry reforming of methane (DRM) in hybrid dielectric barrier discharge (DBD) plasma reactor over La2O3 co-supported Ni/MgAl2O4 catalyst has been investigated. Three different parametric effects namely specific input energy (SIE), discharge volume (VD) and feed flow rate corresponding to GHSV (h−1) are studied using the modified power-law model. The developed kinetic model indicates instantaneous conversions of CH4 and CO2 are functions of SIE, VD and GHSV. Increasing SIE linearly enhances the conversion of CH4 and CO2, while VD displays a non-linear relation with conversion and selectivity. GHSV also shows a linear relation with instantaneous CH4 and CO2 conversion and selectivity of H2 and CO. The rate constants ( k C H 4 , k C O 2 ), determined using the proposed kinetic model and various process parameters, are compared with DRM experimental results for validation. The apparent activation energy (Ea), calculated for CH4 and CO2 using modified Arrhenius equation, are = 32.6 kJ mol−1 (CH4) and Ea = 35.2 kJ mol−1 (CO2), respectively. The modified power-law model is a good preliminary description for future understanding of the overall performance of a hybrid catalytic DBD plasma reactor for DRM.

Keywords: kinetic study; plasma reactor; dbd plasma

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.