LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CaH2-assisted structural engineering of porous defective graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen evolution

Photo from wikipedia

Abstract The practical applications of graphitic carbon nitride (g-C3N4) for photocatalytic hydrogen evolution is strictly hindered by the low surface area, poor light harvesting capability and detrimental recombination of photoexcited… Click to show full abstract

Abstract The practical applications of graphitic carbon nitride (g-C3N4) for photocatalytic hydrogen evolution is strictly hindered by the low surface area, poor light harvesting capability and detrimental recombination of photoexcited charge carriers. Herein, using melamine as precursor and metal hydride (i.e., CaH2) as active agent, we facilely incorporate various types of defects (i.e., nitrogen (N) vacancies (VN), cyano groups (C N) and surface absorbed oxygen species(Oabs)) into g-C3N4 within a single step. The as-prepared material (denoted as MM-H) exhibits narrowed bandgap, promoted photoexcited electron-hole separation rate and facilitated charge transfer kinetics with enlarged BET surface area and massive porosity. As a result, a prominently enhanced photocatalytic H2 productivity efficiency (1305.9 μmol h−1g−1) is shown on MM-H. This performance is better than that of g-C3N4 with CaH2 post-treatment (617.3 μmol h−1g−1) and raw bulk-C3N4 (178.2 μmol h−1g−1). This work opens up a new dimension for designing high performance g–C3N4–based catalysts targeting various photocatalytic processes.

Keywords: hydrogen; photocatalytic hydrogen; nitride c3n4; graphitic carbon; carbon nitride; c3n4

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.