LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of hydrogen by methane dry reforming: A study on the effect of cerium and lanthanum on Ni/MgAl2O4 catalyst performance

Photo from wikipedia

Abstract Hydrogen production from dry reforming of methane (DRM) was investigated on different Nickel based catalysts deposited on MgAl2O4. MgAl2O4 spinel was prepared using γ-Alumina supplied from different manufacturers (Sigma… Click to show full abstract

Abstract Hydrogen production from dry reforming of methane (DRM) was investigated on different Nickel based catalysts deposited on MgAl2O4. MgAl2O4 spinel was prepared using γ-Alumina supplied from different manufacturers (Sigma Aldrich, Alfa Aesar and Degussa) with low and high specific surface area. Moreover, the influence of different parameters on the catalytic activity on methane dry reforming was studied such as the effect of Ni content, the effect of commercial alumina and the effect of doping nickel with cerium and lanthanum. During this study, the catalytic activity was compared at atmospheric pressure at 750 °C during 4 h then 650 °C during 4 h toward methane dry reforming (DRM) reaction with a molar ratio CH4/CO2 = 1/1 and a Weight Hourly Space Velocity (WHSV) of 60.000 mL g−1.h−1. The results showed that among the different catalysts 1.5Ce–Ni5/MgAl2O4, synthesized with alumina from Alfa Aesar, exhibited the best catalytic activity for DRM. Furthermore, this catalyst showed the best performance during a stability test at 600 °C for 24 h under reacting mixture with a low carbon formation rate (2.71 mgC/gcat/h). Such superior activity is consistent with characterization results from BET, XRD, SEM, TPR and TPO analysis. Furthermore, it seems that the addition of Cerium on Ni/MgAl2O4 leads to an increase in catalyst efficiency. It can be due to an effective active oxygen transfer due to the redox properties of CeO2, leading to the formation of oxygen vacancies offering a benefit for DRM reaction.

Keywords: cerium; dry reforming; hydrogen; methane; methane dry; effect

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.