LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of intake air temperature control on characteristics of a Homogeneous Charge Compression Ignition engine for hydrogen-enriched kerosene-dimethyl ether usage

Photo from wikipedia

Abstract In this study, the high-speed of 2000 rpm and low-speed of 1000 rpm behaviors on the HCCI test engine at full load were examined experimentally by controlling the intake air temperature.… Click to show full abstract

Abstract In this study, the high-speed of 2000 rpm and low-speed of 1000 rpm behaviors on the HCCI test engine at full load were examined experimentally by controlling the intake air temperature. The tests were carried out at 0.90 equivalence ratio for hydrogen-enriched kerosene-dimethyl ether mixture. In order to expand the usage of HCCI engines in daily life, their problems encountered at high loads and high speeds need to be solved. The main reason of these problems is the control of the start of combustion since there is no external combustion system in HCCI engines. The experimental results show that the intake air temperature directly affects engine performance and emissions. The intake air temperature control was led to shorter flame development time and better combustion stability. The in-cylinder pressure at 1000 rpm for 373 K is overall 6.82% and 4.07% higher than the 273 K and 298 K. The average heat release rate curve trends at 1000 rpm are overall 45.68% higher than 2000 rpm. The brake specific fuel consumption for 2000 rpm is about 5.29% higher than 1000 rpm. The differences between the two NOx trends are 35.4% maximum and 11.03% minimum for 1000 rpm and 2000 rpm. At high engine speed, the HC formation drops linearly from 488 ppm to 339 ppm with increasing air temperature. Also, the soot formation decreased with a slope of 1.58 times higher than 1000 rpm. Overall, the increase in intake air temperature at the tests positively affected in-cylinder pressure, CO, HC and soot.

Keywords: intake air; 1000 rpm; air temperature; rpm

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.