Abstract NiFe alloy (NFA) nanoparticles decorated Ruddlesden-Popper (RP) type layered perovskite structure Pr0.8Sr1.2(NiFe)O4-δ (RP-PSNF) have been fabricated by in-situ reduction of cubic perovskite Pr0.32Sr0.48Ni0.2Fe0.8O3-δ (P–PSNF) in H2 at 800 °C. When… Click to show full abstract
Abstract NiFe alloy (NFA) nanoparticles decorated Ruddlesden-Popper (RP) type layered perovskite structure Pr0.8Sr1.2(NiFe)O4-δ (RP-PSNF) have been fabricated by in-situ reduction of cubic perovskite Pr0.32Sr0.48Ni0.2Fe0.8O3-δ (P–PSNF) in H2 at 800 °C. When used as the solid oxide fuel cell (SOFC) anode material, the RP-PSNF-NFA based ceramic anode demonstrates a comparable catalytic activity to Ni-based anode. The SOFC single cell with RP-PSNF-NFA-Gd0.2Ce0.8O2−δ (GDC) anode exhibits a maximum power density of 983 and 770 mW cm−2 in humidified H2 and C3H8 at 800 °C, respectively. More importantly, the single cell shows a high durability at the current density of 250 mA cm−2 in humidified C3H8 at 800 °C, demonstrating an excellent coking resistance. Overall, this work suggests that RP-PSNF-NFA is a promising anode for direct hydrocarbon fuel SOFCs.
               
Click one of the above tabs to view related content.