LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of advanced self-supported electrode by surface modification of copper foam with transition metals for efficient hydrogen evolution reaction

Photo from wikipedia

Abstract Electrocatalytic water splitting is one of the most favorable methods for industrial-scale hydrogen production, but high cost and scarcity of commercially available noble metals restrict its application for hydrogen… Click to show full abstract

Abstract Electrocatalytic water splitting is one of the most favorable methods for industrial-scale hydrogen production, but high cost and scarcity of commercially available noble metals restrict its application for hydrogen evolution reaction (HER). It is challenging to develop efficient non-noble metal-based electrocatalysts for HER. Herein, a Ni–Cr was doped on Copper foam (CF) substrate by adopting a simple annealing process. The high electrocatalytic efficiency for HER was achieved with Ni–Cr@CF electrode in strong basic medium with a lower overpotential of 144 mV to gain a current density of 10 mA cm−2 with a small Tafel slope of 88 mV dec−1. After surface modification, the CF substrate exhibits that the entire surface was uniformly covered with Ni–Cr species ensuring the fast reaction kinetics due to the efficient electron transfer process between the substrate and active catalyst. Moreover, the Ni–Cr@CF electrode exhibits excellent stability up to 2000 cycles under the strong basic medium.

Keywords: surface; hydrogen; copper foam; evolution reaction; reaction; hydrogen evolution

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.