LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced hydrogen storage properties of high-loading nanoconfined LiBH4–Mg(BH4)2 composites with porous hollow carbon nanospheres

Photo by priscilladupreez from unsplash

Abstract Novel porous hollow carbon nanospheres (HCNS) have been synthesized and utilized as scaffold for LiBH4–Mg(BH4)2 eutectic borohydride (LMBH). Large loading amounts of LMBH (33, 50 and 67 wt%) have been… Click to show full abstract

Abstract Novel porous hollow carbon nanospheres (HCNS) have been synthesized and utilized as scaffold for LiBH4–Mg(BH4)2 eutectic borohydride (LMBH). Large loading amounts of LMBH (33, 50 and 67 wt%) have been melt-infiltrated into HCNS, and the significantly improved dehydrogenation properties have been discovered. The LMBH@HCNS composites not only exhibit high actual dehydrogenation amounts and fast hydrogen desorption rates, but also an increased reversible hydrogen storage capacities after three cycles without obvious degradation. Further structural tests have revealed that the over-infiltrated LMBH covering the spherical surface of HCNS could also contribute to the improved hydrogen storage behaviors, due to a strong interfacial adhesion effect that avoid LMBH from aggregation during de/rehydrogenation cycles.

Keywords: storage; hydrogen storage; carbon nanospheres; porous hollow; libh4 bh4; hollow carbon

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.