LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Density functional theory study on dehydrogenation of methylcyclohexane on Ni–Pt(111)

Photo from wikipedia

Abstract Methylcyclohexane is a very promising liquid organic hydrogen carrier, but its dehydrogenation mechanism on Pt-based bimetallic catalysts is not yet clear. In order to understand the catalytic dehydrogenation of… Click to show full abstract

Abstract Methylcyclohexane is a very promising liquid organic hydrogen carrier, but its dehydrogenation mechanism on Pt-based bimetallic catalysts is not yet clear. In order to understand the catalytic dehydrogenation of methylcyclohexane on Ni–Pt(111), DFT calculations were performed and the calculation results were compared with the corresponding values on Pt(111). It is shown that because the electronegativity of Ni atoms is less than that of Pt atoms, electrons transfer from Ni atoms to Pt atoms. Compared with Pt(111), the binding energy (the absolute value of the adsorption energy) of related species on Ni–Pt(111) surface was smaller, indicating that the binding strength between these species and the surface metal atoms on Ni–Pt(111) is weaker. In the stable adsorption configurations on Ni–Pt(111), almost all the metal atoms forming chemical bonds with the adsorbates were Pt atoms, indicating that Pt was the main active component. Although the actual catalytic reaction is more complicated, this study provided some insights into one of the important aspects.

Keywords: methylcyclohexane; density functional; dehydrogenation; methylcyclohexane 111; dehydrogenation methylcyclohexane; study

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.