LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Review on effective parameters in electrochemical hydrogen storage

Photo from wikipedia

Abstract Today, energy has become one of the most important concerns of developing countries. The use of non-renewable energy sources, as well as the production of pollution, has led to… Click to show full abstract

Abstract Today, energy has become one of the most important concerns of developing countries. The use of non-renewable energy sources, as well as the production of pollution, has led to growing efforts to replace fossil fuels, which are the most important energy sources in the modern world. Hydrogen as a clean fuel has attracted a lot of attention in recent years. Various methods have been reported for the production and storage of hydrogen. According to their advantages and disadvantages, it can be said that electrochemical hydrogen storage method is superior to other methods in terms of cost, safety, and optimum condition. The electrochemical hydrogen storage is done in a variety of techniques, and in recent years, the chronopotentiometry method has become one of the most popular methods for scientists. In chronopotentiometry technique, several parameters such as the reference electrode, the counter electrode, the working electrode, electrolyte, and current density are important. In this review, we investigated the articles that have been done in this regard from 2000 to 2020. This review can help scientists to better understand the electrochemical hydrogen storage system.

Keywords: storage; hydrogen storage; hydrogen; energy; electrochemical hydrogen; review

Journal Title: International Journal of Hydrogen Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.