LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of ignition position and inert gas on hydrogen/air explosions

Photo from wikipedia

Abstract The effects of inert gas (i.e., He, Ar, and N2) and ignition position on flame dynamics in a half-open duct with an aspect-ratio of 10 are analyzed for hydrogen/air… Click to show full abstract

Abstract The effects of inert gas (i.e., He, Ar, and N2) and ignition position on flame dynamics in a half-open duct with an aspect-ratio of 10 are analyzed for hydrogen/air mixtures with constant laminar burning velocity SL. The results indicate that hydrodynamic and thermo-diffusive instabilities dominate flame propagations with ignition at the right-half part of the duct, while Rayleigh–Taylor instability dominates with ignition at the left-half part of the duct. The flame-sound interaction results in the periodic pressure oscillations. Due to decreased instability, the He-diluted flame exhibits a weaker sensitivity of explosion parameters to the ignition position. The maximum pressure Pmax is dominated by different mechanisms depending on the ignition position. Although constant SL is used, Pmax for the worst case with N2 dilution is two times that with He dilution, demonstrating the considerable effect of flame instabilities. Finally, a chemical kinetic calculation is performed to clarify the flame stabilities.

Keywords: ignition position; hydrogen; inert gas; ignition; flame

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.