LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High cycle fatigue behaviors of API X65 pipeline steel welded joints in air and H2S solution environment

Photo from wikipedia

Abstract To investigate the mutual effect of hydrogen, microstructures and stress concentration on the fatigue failure, fatigue behaviors of X65 steel welded joints in both air and saturated H2S solution… Click to show full abstract

Abstract To investigate the mutual effect of hydrogen, microstructures and stress concentration on the fatigue failure, fatigue behaviors of X65 steel welded joints in both air and saturated H2S solution were investigated at high cycle regime. The experimental result demonstrates that due to lower dislocation density observed by electron backscattered diffraction (EBSD), the fine grain heat affected zone (FGHAZ) is prone to induce cyclic strain localization and further lead to fatigue crack propagating along the FGHAZ in air. Furthermore, the quasi-cleavage with brittle-like fatigue striations and secondary crack on the fracture surface in saturated H2S solution is attributed to hydrogen embrittlement. Moreover, compared with base metal (BM) and FGHAZ, the weld metal (WM) and coarse grain heat affected zone (CGHAZ) are composed of bainite and martensite/austenite (M/A) phase, and more sensitive to hydrogen. Therefore, the fatigue crack is prone to grow along the interface between WM and CGHAZ under the normal applied stress.

Keywords: fatigue; fatigue behaviors; air; h2s solution; steel welded

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.