LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ru nanoparticles loaded on tannin immobilized collagen fibers for catalytic hydrolysis of ammonia borane

Abstract A kind of Ru-based catalyst was prepared by using a natural polyphenolic polymer (bayberry tannin, BT) immobilized on collagen fiber (CF) as the stabilizer and carrier of Ru nanoparticles… Click to show full abstract

Abstract A kind of Ru-based catalyst was prepared by using a natural polyphenolic polymer (bayberry tannin, BT) immobilized on collagen fiber (CF) as the stabilizer and carrier of Ru nanoparticles (NPs) and characterized to detect its main physicochemical properties. The CF-BT-Ru catalyst was found to be in an orderly fiber morphology with Ru NPs with about diameter of 2.6 nm highly distributed on the surface. The research on catalytic activity of CF-BT-Ru focused on the hydrolysis of ammonia borane (AB) to produce hydrogen. The influences of Ru loading, Ru dosage, AB concentration and temperature on the catalytic AB hydrolysis were investigated in detail, and the related thermodynamic parameters (activation energy (Ea), activation entropy (△S), activation enthalpy (△H) and Gibbs free energy (△G)) were calculated. The experimental results indicated that CF-BT-Ru exhibited high catalytic activity. Its turnover frequency (TOF) was as high as 322 mol H 2 ⋅ mol Ru − 1 ⋅ min − 1 and Ea was as low as 32.41 kJ mol−1 for AB hydrolysis. Moreover, CF-BT-Ru exhibited satisfied reusability and stability. Its activity lost only one-fifth and no obvious agglomeration and leakage of Ru NPs were found after repeated use for 5 times.

Keywords: hydrolysis; hydrolysis ammonia; catalytic hydrolysis; ammonia borane; tannin immobilized; immobilized collagen

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.