Abstract Hydrogen (H2) has been proposed as an alternative energy carrier to reduce the carbon footprint and associated radiative forcing of the current energy system. Here, we describe the representation… Click to show full abstract
Abstract Hydrogen (H2) has been proposed as an alternative energy carrier to reduce the carbon footprint and associated radiative forcing of the current energy system. Here, we describe the representation of H2 in the GFDL-AM4.1 model including updated emission inventories and improved representation of H2 soil removal, the dominant sink of H2. The model best captures the overall distribution of surface H2, including regional contrasts between climate zones, when vd(H2) is modulated by soil moisture, temperature, and soil carbon content. We estimate that the soil removal of H2 increases with warming (2–4% per K), with large uncertainties stemming from different regional response of soil moisture and soil carbon. We estimate that H2 causes an indirect radiative forcing of 0.84 mW m−2/(Tg(H2)yr−1) or 0.13 mW m−2 ppbv−1, primarily due to increasing CH4 lifetime and stratospheric water vapor production.
               
Click one of the above tabs to view related content.