LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review

Photo from wikipedia

Abstract Direct methanol fuel cell (DMFC) is an environment friendly energy source that transforms chemical energy of methanol oxidation into electrical energy. The Pt- and non-Pt based bimetallic nanoparticles (BMNPs)… Click to show full abstract

Abstract Direct methanol fuel cell (DMFC) is an environment friendly energy source that transforms chemical energy of methanol oxidation into electrical energy. The Pt- and non-Pt based bimetallic nanoparticles (BMNPs) with electrocatalyst support materials are employed as anode electrocatalysts for methanol oxidation. These supported BMNPs have drawn prominent consideration due to their incredible physical and chemical properties. This article reviews the advancements in the field of supported BMNPs of varied structures, compositions and morphologies, using innumerable carbonaceous support materials such as carbon black, carbon nanotubes, carbon nanofibers, graphene, mesoporous carbon as well as non-carbonaceous supports like inorganic oxides, graphitic carbon nitride, metal nitrides, conducting polymers and hybrid support materials. The performance of electrocatalysts on the basis of support material, structure, composition and morphology of BMNPs, and pros and cons of various support materials have been discussed.

Keywords: methanol fuel; methanol; support materials; support; bimetallic nanoparticles; direct methanol

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.