LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-hydrothermal gasification of microbial sludge and algae Kappaphycus alvarezii for bio-hydrogen production: Study on aqueous phase reforming

Photo by unstable_affliction from unsplash

Abstract In this study, wastewater obtained from a sewage treatment plant was treated successively by using microbial consortium and macroalgae Kappaphycus alvarezii to generate microbial sludge and algal biomass. The… Click to show full abstract

Abstract In this study, wastewater obtained from a sewage treatment plant was treated successively by using microbial consortium and macroalgae Kappaphycus alvarezii to generate microbial sludge and algal biomass. The production of green fuel was carried out via co-gasification of microbial sludge and macroalgae Kappaphycus alvarezii for a duration of 60 min, feedstock to solvent ratio (5 to 20 g of feedstock in 200 mL), sludge to algae ratio (ranging from 1:1 to 3:1) and temperature (300–400 °C) respectively. Maximum bio-hydrogen yield was 36.1% and methane yield was 38.4% at a temperature of 360 °C at a feedstock to solvent ratio of 15:200 g/mL and sludge to algae ratio of 2:1 individually. The liquid by product of co-gasification process was later subjected to photocatalytic reforming, resulted in an enhanced hydrogen composition of 61.25%.

Keywords: hydrogen; kappaphycus alvarezii; microbial sludge; sludge algae; gasification; sludge

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.