LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steam reforming of toluene as model compound of biomass tar over Ni–Co/La2O3 nano-catalysts: Synergy of Ni and Co

Photo from wikipedia

Abstract A series of LaNi1-xCoxO3 (x = 0, 0.2, 0.5, 0.8 and 1) perovskite catalysts were prepared successfully and applied for toluene steam reforming as a model tar molecule. The Ni–Co alloy… Click to show full abstract

Abstract A series of LaNi1-xCoxO3 (x = 0, 0.2, 0.5, 0.8 and 1) perovskite catalysts were prepared successfully and applied for toluene steam reforming as a model tar molecule. The Ni–Co alloy formation in reduced LaNi1-xCoxO3 was confirmed by TPR, XRD and XPS. The strong interaction in LaNi0.8Co0.2O3 between Ni and Co produced highly dispersed and smaller metal (8–9 nm), higher reducibility and larger amounts of active sites as well as more abundant oxygen defects and higher surface/lattice oxygen mobility, confirmed by XRD, TEM, TPR, XPS and O2-TPD. Also, a higher electron density prevented Ni from oxidation and sintering; a more oxidized Co (Co3+) facilitated the dissociation of water and activation of CO2, thus removing the coke. At 600 °C, S/C = 3.4 and WHSV = 16.56 ml h−1 gcat−1, an equilibrium conversion was achieved initially and over 80% conversion after 24 h were obtained for LaNi0.8Co0.2O3 with a high H2 yield (81.8% at maximum) and 8.0 of H2/CO ratio. The graphitic/filamentous coke formation was alleviated and no metal sintering was presented after the reaction.

Keywords: reforming toluene; steam reforming; steam; tar; toluene model

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.