LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing hydrogen evolution of water splitting under solar spectra using Au/TiO2 heterojunction photocatalysts

Photo from wikipedia

Abstract An effective improvement of hydrogen evolution from water splitting under solar light irradiation was investigated using quantum dots (QDs) compounds loaded onto a Au/TiO2 photocatalyst. First, Au/TiO2 was prepared… Click to show full abstract

Abstract An effective improvement of hydrogen evolution from water splitting under solar light irradiation was investigated using quantum dots (QDs) compounds loaded onto a Au/TiO2 photocatalyst. First, Au/TiO2 was prepared by the deposition-precipitation method, and then sulfide QDs were loaded onto the as-prepared Au/TiO2 by a hydrothermal method. QDs were loaded onto Au/TiO2 to enhance the energy capture of visible light and near-infrared light of the solar spectrum. The results indicated that the as-prepared heterojunction photocatalysts absorbed the energy from the range of ultraviolet light to the near-infrared light region and effectively reduced the electron-hole pair recombination during the photocatalytic reaction. Using a hydrothermal temperature of 120 °C, the as-prepared (ZnS–PbS)/Au/TiO2 photocatalyst had a PbS QDs particle size of 5 nm, exhibited an energy gap of 0.92 eV, and demonstrated the best hydrogen production rate. Additionally, after adding 20 wt % methanol as a sacrificial reagent to photocatalyze for 5 h, the hydrogen production rate reached 5011 μmol g−1 h−1.

Keywords: heterojunction photocatalysts; water splitting; evolution water; hydrogen; hydrogen evolution; splitting solar

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.