LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen embrittlement and hydrogen diffusion behavior in interstitial nitrogen-alloyed austenitic steel

Photo from wikipedia

Abstract The susceptibility to hydrogen embrittlement and diffusion behavior of hydrogen were evaluated in interstitial nitrogen-alloyed austenitic steel QN1803 and 304 and 316 L stainless steels. The amount of transformed martensite… Click to show full abstract

Abstract The susceptibility to hydrogen embrittlement and diffusion behavior of hydrogen were evaluated in interstitial nitrogen-alloyed austenitic steel QN1803 and 304 and 316 L stainless steels. The amount of transformed martensite and the activation energy of hydrogen diffusion were revealed via electron backscattering diffraction and thermal desorption spectroscopy. The austenite stability of QN1803 during the deformation process was higher than that of 304 and 316 L. However, the hydrogen content of QN1803 was high because of the small grain size and low activation energy of hydrogen diffusion. For the stable QN1803 and 316 L austenitic steels, martensite had no evident harmful effect because of its discrete distribution. A planar dislocation slip was observed in QN1803 during deformation. Hydrogen charging enhanced dislocation mobility, leading to severe strain localization. Thus, the severe strain in QN1803 promoted microcracking.

Keywords: interstitial nitrogen; hydrogen; diffusion; hydrogen embrittlement; hydrogen diffusion; diffusion behavior

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.