LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2D numerical study on the deflection of thin steel plate subjected to gaseous detonation wave interaction

Photo from wikipedia

Abstract An elaborate numerical study with a validated LS-DYNA® immersed boundary method fluid-solid interaction code is used to characterize the influence of pre-detonation pressure, ignition point location and time duration… Click to show full abstract

Abstract An elaborate numerical study with a validated LS-DYNA® immersed boundary method fluid-solid interaction code is used to characterize the influence of pre-detonation pressure, ignition point location and time duration on plastic deformation of thin steel plates subjected to hydrogen-oxygen gaseous detonation. Simulation relies on the modeling of detonation by chemical reaction kinetic and its propagation by conservative element solution element solver. Immersed boundary method is used to simulate the interface motion between the detonating gas and the deforming plate to facilitate the assessment of fluid pressure distribution on the plate surface. The numerical tool relates the pressure distribution and gaseous detonation parameters to the plate macroscopic deformation by employing multi-species reactive Euler's equations for the gas and assuming a Johnson-Cook material model for the plate. The numerical model simulated the experimental tests and a good agreement between them was obtained where specific features of gas detonation-driven forming were considered. With the confidence of the validation, the numerical model investigated the effects of different parameters such as the gaseous mixture initial temperature and combustion cylinder longitudinal capacity on overpressure-time history and strain-time history. It is demonstrated that the larger longitudinal capacity of combustion cylinder and more distant ignition point location have a great influence on increasing the detonation wave intensity. Eventually, the rate-dependent Johnson-Cook failure criterion was used to assess the failure state of plate under high-intensity detonations.

Keywords: numerical study; plate; detonation; detonation wave; thin steel; gaseous detonation

Journal Title: International Journal of Hydrogen Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.