LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity

Photo from wikipedia

Objective The coronavirus disease-19 (COVID-19) pandemic has caused an exponential rise in death rates and hospitalizations. The aim of this study was to characterize the D614 G mutation of SARS-CoV-2 S-protein,… Click to show full abstract

Objective The coronavirus disease-19 (COVID-19) pandemic has caused an exponential rise in death rates and hospitalizations. The aim of this study was to characterize the D614 G mutation of SARS-CoV-2 S-protein, which may affect viral infectivity. Methods The effect of D614 G mutation on the structure and thermodynamic stability of S-protein was analyzed using DynaMut and SCooP. HDOCK and PRODIGY were used to model furin protease binding to the S-protein RARR cleavage site and calculate binding affinities. Molecular dynamic (MD) simulations were used to predict S-protein apo structure, S-protein–furin complex structure, and the free binding energy of the complex. Results The D614 G mutation in the G clade of SARS-CoV-2 strains introduced structural mobility and decreased thermal stability of S-protein (ΔΔG: −0.086 kcal/mol). The mutation resulted in a stronger binding affinity (Kd = 1.6 × 10−8) to furin which may enhance S-protein cleavage. Results were corroborated by MD simulations demonstrating higher binding energy of furin to S-protein D614 mutant (−61.9 kcal/mol compared with -56.78 kcal/mol for wild-type S-protein). Conclusions The D614 G mutation in the G clade induced the flexibility of S-protein, resulting in increased furin binding which may enhance S-protein cleave and infiltration of host cells. As such, SARS-CoV-2 D614 G mutation may result in a more virulent strain.

Keywords: protein; d614 mutation; furin; sars cov; binding affinity

Journal Title: International Journal of Infectious Diseases
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.