LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On improving ballistic limit of bi-layer ceramic–metal armor

Photo from wikipedia

Abstract This paper investigates experimentally and numerically methods to enhance the ballistic performance of ceramic armor. Initially we demonstrate an experimental set-up to impose pre-stress to ceramic-metal bi-layer armor and… Click to show full abstract

Abstract This paper investigates experimentally and numerically methods to enhance the ballistic performance of ceramic armor. Initially we demonstrate an experimental set-up to impose pre-stress to ceramic-metal bi-layer armor and study the depth of penetration to measure the ballistic efficiency as a function of pre-stress intensity validating our previous numerical studies on effect of pre-stress on the ballistic limit of ceramic armor (Int. Journal of Impact Engineering, 2015(84)159-170). Secondly, a module is designed and tested to achieve interface defeat in ceramic armor with multiple interface layers. Finally, influence of thickness of the steel cover plate (CP) on ballistic performance of SiC ceramic is studied through AUTODYN® finite element simulations for normal and oblique (NATO 60°) against long rod projectile (LRP) with a conical tip. The LRP and CP are modeled using smooth particle hydrodynamic (SPH) particles and rest of the component is modeled using Lagrangian domain. The numerical analyses of armor modules are compared via depth of penetration (DOP) and LRP residual length for varying cover plate thicknesses.

Keywords: ballistic limit; layer; ceramic metal; armor

Journal Title: International Journal of Impact Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.