LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy absorption in lattice structures in dynamics: Nonlinear FE simulations

Photo by mbrunacr from unsplash

An experimental study of the stress–strain behaviour of titanium alloy (Ti6Al4V) lattice structures across a range of loading rates has been reported in a previous paper [1]. The present work… Click to show full abstract

An experimental study of the stress–strain behaviour of titanium alloy (Ti6Al4V) lattice structures across a range of loading rates has been reported in a previous paper [1]. The present work develops simple numerical models of re-entrant and diamond lattice structures, for the first time, to accurately reproduce quasi-static and Hopkinson Pressure Bar (HPB) test results presented in the previous paper. Following the development of lattice models using implicit and explicit non-linear finite element (FE) codes, the numerical models are first validated against the experimental results and then utilised to explore further the phenomena associated with impact, the failure modes and strain-rate sensitivity of these materials. We have found that experimental results can be captured with good accuracy by using relatively simple numerical models with beam elements. Numerical HPB simulations demonstrate that intrinsic strain rate dependence of Ti6Al4V is not sufficient to explain the emergent rate dependence of the re-entrant cube samples. There is also evidence that, whilst re-entrant cube specimens made up of multiple layers of unit cells are load rate sensitive, the mechanical properties of individual lattice structure cell layers are relatively insensitive to load rate. These results imply that a rate-independent load-deflection model of the unit cell layers could be used in a simple multi degree of freedom (MDoF) model to represent the impact behaviour of a multi-layer specimen and capture the microscopic rate dependence.

Keywords: rate dependence; energy absorption; numerical models; lattice structures; rate; lattice

Journal Title: International Journal of Impact Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.