Abstract We demonstrate significant enhancement of an effective Q-factor in a silica planar waveguide-based asymmetric Mach–Zehnder interferometer (AMZI) coupled with a microdisk. To enhance the Q-factor, which is required to… Click to show full abstract
Abstract We demonstrate significant enhancement of an effective Q-factor in a silica planar waveguide-based asymmetric Mach–Zehnder interferometer (AMZI) coupled with a microdisk. To enhance the Q-factor, which is required to more effectively measure the signal changes occurring during biochemical events, the structure utilizes resonance mode splitting. This phenomenon is observed through power cancellation at the same amplitude and a 180° phase difference of each path in the AMZI. In this study, we experimentally showed the effective Q-factor enhancement by comparing resonance characteristics of a fabricated microdisk, AMZI, and the proposed structure at equal fabrication conditions. We measured an effective Q-factor of 9.15 × 104 with a 22 dB extinction ratio.
               
Click one of the above tabs to view related content.