Abstract In this paper, based on the finite element analysis and the heat transfer theory, we analyze the influence of the positions of heat source on the fiber optic gyroscope… Click to show full abstract
Abstract In this paper, based on the finite element analysis and the heat transfer theory, we analyze the influence of the positions of heat source on the fiber optic gyroscope (FOG) scale factor temperature error. Meanwhile, we explore the effect of fiber diameter and turns and layers of the fiber coil on the scale factor temperature error. The result shows that influence factors of the FOG scale factor error are the space position of heat source and the fiber diameter. When the heat source is set on the top surface of the fiber coil, the scale factor temperature error is less than that of the outside set heat source situation, and reduce this error by 20ppm through using the temperature compensation. No matter how the length of the fiber and the average radius of the fiber coil change, selecting a fiber with a small diameter and a thin coating layer can reduce the scale factor temperature error by 10ppm. However, the variation of turns and layers of the fiber coil affects the scale factor temperature error within 0.05ppm, which is negligible.
               
Click one of the above tabs to view related content.