LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An investigation of resolved shear stress on activation of slip systems during ultraprecision rotary cutting of local anisotropic Ti-6Al-4V alloy: Models and experiments

Photo from wikipedia

Abstract Ti-6Al-4V alloy with local anisotropic characteristics is produced by electropulsing treatment (EPT) and used in ultraprecision rotary diamond cutting to explore the deformation mechanism of the alloy. Two different… Click to show full abstract

Abstract Ti-6Al-4V alloy with local anisotropic characteristics is produced by electropulsing treatment (EPT) and used in ultraprecision rotary diamond cutting to explore the deformation mechanism of the alloy. Two different orientations of lamellar martensite α give rise to the local anisotropic behaviour. Critical resolved shear stress (CRSS) is introduced in this paper to investigate the slip modes of the hexagonal closest packing martensite. A geometrical and physical model is also proposed for calculation of resolved shear stresses on various slipping systems. The results show that glide occurs in some certain directions on the condition that resolved shear stress equals or exceeds the CRSS. The cutting force varies with martensitic orientations, which is supposedly due to the combined effects of lamellar α phase sizes and the coordination or competition of diverse slipping directions.

Keywords: resolved shear; 6al alloy; shear stress; local anisotropic

Journal Title: International Journal of Machine Tools and Manufacture
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.