LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of material removal in magnetic abrasive finishing process with spherical magnetic abrasive powder

Photo from wikipedia

Abstract This study describes the application of a magnetic abrasive finishing (MAF) process to yield a fine finish on planar workpiece (SS304). The grinding tool is a flexible abrasive brush… Click to show full abstract

Abstract This study describes the application of a magnetic abrasive finishing (MAF) process to yield a fine finish on planar workpiece (SS304). The grinding tool is a flexible abrasive brush using diamond particles embedded in a spherical iron matrix. This bonded type of spherical MAPs was developed via an atomization technology to solve the problem that hard particles were easily thrown from the magnetic field at high rotational speed. Theoretical model of the material removal was composed of the mechanical properties of work material and four applied process parameters such as working gap, rotational speed of magnetic pole, feed rate of workpiece, and size of magnetic abrasive powder (MAP). The magnitude and distribution of generated magnetic flux was simulated by finite element analysis to evaluate the normal pressure of MAP. The single factor experiment was conduct to analyze the relationship between surface roughness reduction and material removal. Scanning electron microscopy was used to understand the effect of different abrasive material on the finished surface of workpiece. Under the same optimum processing condition, diamond MAPs produced a better surface roughness and more material removal than CBN MAPs and alumina MAPs did. The established theoretical model brought out that high material removal corresponds to a fine surface roughness in the MAF process with atomized spherical MAPs.

Keywords: abrasive finishing; material removal; process; material; magnetic abrasive

Journal Title: International Journal of Mechanical Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.