LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid multi-physics simulation for electro-thermal origami systems

Photo by lanceplaine from unsplash

Electro-thermally actuated origami provides a novel method for creating 3-D systems with advanced morphing and functional capabilities. However, it is currently difficult to simulate the multi-physical behavior of such systems… Click to show full abstract

Electro-thermally actuated origami provides a novel method for creating 3-D systems with advanced morphing and functional capabilities. However, it is currently difficult to simulate the multi-physical behavior of such systems because the electro-thermal actuation and large folding deformations are highly interdependent. In this work, we introduce a rapid multi-physics simulation framework for electro-thermally actuated origami systems that can simultaneously capture: thermo-mechancially coupled actuation, inter panel contact, heat transfer, large deformation folding, and other complex loading applied onto the origami. Comparisons with finite element models validate the proposed framework for simulating origami heat transfer with different system geometries, materials, and surrounding environments. Verification of the simulated folding behaviors against physical electro-thermal micro-origami further demonstrates the validity of the proposed model. Simulations of more complex origami patterns and a case study for origami optimization are provided as application examples to show the capability and efficiency of the model. The framework provides a novel simulation tool for analysis, design, control, and optimization of active origami systems, pushing the boundary for feasible shape morphing and functional capability.

Keywords: origami; origami systems; physics; rapid multi; electro thermal; simulation

Journal Title: International Journal of Mechanical Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.